Acid base balance disorders

Natalia Belîi, assistant professor Chair of anesthesiology and reanimatology no. 1 "Valeriu Ghereg" Nicolae Testemitanu State University of Medicine and Pharmacy e-mail: natalia.belii.med@gmail.com

What we will talk about today

The buffer systems functioning in blood plasma Respiratory regulation of acid-base balance Renal regulation of acid-base balance High and normal anion gap metabolic acidosis Metabolic alkalosis Respiratory acidosis Respiratory alkalosis

The Arterial Blood Gas (ABG)

Acid-base balance

pH/ PaCO₂/ PaO₂/ HCO₃-/ O₂ Sat

The Arterial Blood Gas (ABG)

Acid-base balance

pH/ PaCO₂/ PaO₂/ HCO₃-/ O₂ Sat

Ventilation

The Arterial Blood Gas (ABG)

Acid-base balance

pH/ PaCO₂/ PaO₂/ HCO₃-/ O₂ Sat

Ventilation Oxygenation

Maintenance of normal pH: buffers

The most important buffer in blood is *bicarbonate/carbon dioxide* (HCO₃⁻/CO₂);

Other buffer systems are:

- ✓ disodium phosphate/monosodium phosphate (Na₂HPO₄^{2−}/ NaH₂PO₄^{−)};
- 🤜 plasma proteins;
- erythrocytes contain the important hemoglobin (Hb) system, reduced Hb (HHb⁻), and oxyhemoglobin (HbO₂²⁻);

P.S.: Bones also participate in buffering.

Bicarbonate-Carbonic Acid Buffer

 most important buffer in blood
the HCO3–/CO2 system provides the first line of defense in protecting pH

 $CO_2 + H_2O \implies H_2CO_3 \implies HCO_3 + H^{\dagger}$ BICARBONATE

CARBON DIOXIDE + WATER

its role as a buffer can be described by incorporating this system into the Henderson–Hasselbalch equation

CARBONIC ACID

Phosphate Buffer

In effective in regulating intracellular pH more efficiently than extracellular pH (due to their higher concentrations inside the cell)

sthe pKa of this system is 6.8, which is close to the intracellular pH

alkalin component K2HPO4

solution acid component KH2PO4

 $HC1 + Na_2HPO_4 \rightarrow NaC1 + NaH_2PO_4$

 $NaOH + NaH_2PO_4 \rightarrow Na_2HPO_4 + H_2O$

Protein Buffers in Blood Plasma

In acidic medium, amino acid acts as a base and absorbs H⁺

OH

In alkaline medium, amino acid acts as an acid and releases H⁺

Hemoglobin as a Buffer

- principal protein inside of red blood cells;
- during the conversion of CO₂ into bicarbonate, H⁺ is liberated in the reaction are buffered by Hb, which is reduced by the dissociation of oxygen;
- the process is reversed in the pulmonary capillaries to re-form CO₂, which then can diffuse into the air sacs to be exhaled into the atmosphere.

 $KOH + HHb \rightarrow KHb + H_2O$ $HCl + KHb \rightarrow HHb + KCl$

Regulation of acid-base balance

Site	Mechanism	
Lungs	Expiration of CO ₂	
Proximal tubule Distal tubule collecting duct	Reabsorption of HCO ₃ -	
	Excretion of H ⁺ as titrable acid (e.g. H ⁺ + HPO ₄ ²⁻ = H ₂ PO ₄ ⁻)	
	e/ Excretion of NH4+	

Springer Science+Business Media LLC 2018 A.S. Reddi, Fluid, Electrolyte and Acid-Base Disorders, DOI 10.1007/978-3-319-60167-0_26

The kidney's role and acid-base regulation

- ≪Reabsorption of filtered HCO₃⁻
- Generation of new HCO₃[−] by titratable acid excretion
- Formation of HCO₃⁻ from generation of NH₄⁺

ABG terminology

Acidemia: an increase in blood [H+]

- Alkalemia: a decrease in blood [H⁺]
- Acidosis: a pathophysiologic process that tends to acidify body fluids
- Alkalosis: a pathophysiologic process that tends to alkalinize body fluids
- Arterial blood gas (ABG): includes pH, pCO2, and calculated serum [HCO₃⁻]
- Normocapnia: normal arterial pCO₂ (40 mmHg)

- Normobicarbonatemia: normal serum [HCO₃⁻] (24 mEq/L)
- Hypobicarbonatemia: a decrease in serum [HCO₃[−]]
- Hyperbicarbonatemia: an increase in serum [HCO₃-]

Acid-base terminology

- Primary change: an abnormality in either the serum [HCO₃⁻] or arterial pCO₂ resulting from a primary change in body function/metabolism or additions to or losses from body fluids
- Secondary change: a compensatory (secondary) response that acts to minimize changes in pH produced by the primary disorder (compensation)
- Simple acid–base disorder: presence of one primary disorder with appropriate secondary response
- Mixed acid–base disorder: simultaneous occurrence of two or more primary disorders

Pathogenesis of Acid-Base Disorders

Metabolic acidosis develops because of the following conditions:

Loss of HCO₃⁻ either from the GI tract or kidney
Retention of H⁺ due to impaired renal function
Addition of exogenous or endogenous of strong acids

Pathogenesis of Acid-Base Disorders

Metabolic alkalosis develops due to retention of HCO_3^- and/ or loss of H⁺.

Respiratory acidosis results from retention of pCO_2 .

Respiratory alkalosis develops from hyperventilation.

Normal compensatory responses to primary acid–base disorders

Acid–base disorder	Compensatory response
Metabolic acidosis	pCO ₂ = HCO ₃ ⁻ ×1.5+8 \pm 2, or for each mEq/L decrease in HCO ₃ ⁻ , pCO2 decreases by 1.2 mmHg
Metabolic alkalosis	For each mEq/L increase in HCO_3^- , pCO_2 increases by 0.7 mmHg
Respiratory acidosis	
Acute	For each mmHg increase in pCO_2 , HCO_3^- increases by 0.1 mEq/L
Chronic	For each mmHg increase in pCO_2 , HCO_3^- increases by 0.4 mEq/L
Respiratory alkalosis	
Acute	For each mmHg decrease in pCO ₂ , HCO ₃ ⁻ decreases by 0.2 mEq/L
Chronic	For each mmHg decrease in pCO_2,HCO_3^- decreases by 0.4 mEq/L

Primary acid–base disturbances and their secondary response

Acid–base disorder	рН	Primary change	Secondary change	Mechanism of secondary change
Metabolic acidosis	< 7,40	↓ HCO3-	↓ pCO2	Hyperventilation
Metabolic alkalosis	> 7,40	↑ HCO3-	↑ pCO2	Hypoventilation
Respiratory acidosis	< 7,40	↑ pCO2	↑ HCO3-	↑ reabsorbton HCO3−
Respiratory alkalosis	> 7,40	↓ pCO2	↓ HCO3-	↓ reabsorbtion HCO3−

Springer Science+Business Media LLC 2018 A.S. Reddi, Fluid, Electrolyte and Acid-Base Disorders, DOI 10.1007/978-3-319-60167-0_26

Arterial vs. Venous Blood Sample for ABG

ABG value	Arterial blood	Venus blood
[H+] (nmol/L)	40	44
рН	7,40	7,36
pCO2 (mmHg)	40	48
[HCO3-] (mEq/L)	24	26

caused by decrease in $HCO_{3}^{-} < 24 \text{ mmol/l in}$ the blood

Metabolic

lowers pH < 7.35(BE > -2mEq/l)

acidosis

Blood pH

Blood: electrically neutral

pH: 7.35 - 7.45

Blood:electrically neutral

Blood:electrically neutral

Metabolic acidosis: high or normal AG?

Lactic acidosis

Decreased oxygen delivery to the tissues = anaerobic metabolism = buildup of lactic acid

Uncontrolled diabetes mellitus

Lack of insulin = cells use fats as primary energy fuel instead of glucose

Fats = converted to ketoacids (acetoacetic acid and βhydroxybutyric acid)

chronic renal failure

organic acids (uric acid or sulfur- containing amino acids) accumulate

- oxalic acid (build up after an accidental ingestion of ethylene glycol, which is a common antifreeze);
- formic acid (a metabolite of methanol, a highly toxic alcohol);
- hippuric acid (comes from toluene, which is found in paint and glue).

- **G** glycols (ethylene and propylene glycols)
- **O** oxoproline (pyroglutamic acid)
- L L-lactate
- D D-lactate
- M methanol
- **A** aspirin
- **R** renal failure
- K ketoacidosis

Blood: electrically neutral

Metabolic acidosis: normal AG

bicarbonate - rich intestinal and pancreatic secretions rush through the gastrointestinal tract before they can be reabsorbed

Metabolic acidosis: normal AG

- the most common type of renal tubular acidosis
- develops because the proximal convoluted tubule is unable to reabsorb bicarbonate HCO₃⁻
Metabolic acidosis: normal AG

the proximal convoluted tubule is unable to reabsorb bicarbonate HCO₃⁻ inability to excrete protons H+ in the urine

type 2 renal tubular acidosis Other types of renal tubular acidosis

Hyperchloremic metabolic acidosis

UAG = (UNa+UK–UCI) positive UAG = renal ; negative UAG = extrarenal

Metabolic acidosis: etiology

Increased H+ production Loss of bicarbonate

Lactic acidosis: Type A: hypoperfusion (shoks); Type B: severe liver diseases, metformin, malignancies, alchoolism, mitocondrial dysfunction, antiretroviral drugs;

Ketoacidosis: Diabetis

Toxins: methanol, ethylene glycol, salycilate posoning, chronic acetaminophen ingestion; D-lacticcidosis; Toluene ingestion.

Diarrhea/ GI losses RTA type 2 (proximal);

Post-treatment of ketoacidosis

Carbonic anhydrase inhibitors

Decreased acid excretion

Chronic kidney disease;

RTA type 1 (distal, inability to secret H⁺);

RTA type 4 (hyperkaliemic, decreased function of aldosteron).

Metabolic acidosis: physiopathology

Treatment: Remove the cause. Administer an IV alkali solution, e.g., sodium bicarbonate or sodium lactate. Restore water, electrolytes, and nutrients.

Clinical manifestations of metabolic acidosis

Cardiovascular

- ✓ Increased heart rate and contractility at pH <7.2;</p>
- Solution of the second structure of the second stru
- Increased peripheral vasodilation and hypotension.

Neurologic

- Increased sympathetic stimulation, increased cerebral blood flow
- Altered mental status, decreased cerebral metabolism

Clinical manifestations of metabolic acidosis

Respiratory

Increased minute ventilation, dyspnea, decreased diaphragmatic contractility

Other

Inhibition of anaerobic metabolism
Increased protein catabolism
Increased metabolic rate
Impaired phagocytosis
Decreased ATP production
Impaired skeletal growth
Bone pain

Metabolic acidosis: treatment

- Removing/ treating the underlying cause improves lactic acidosis
- Circulatory support
- Stress Broad-spectrum antibiotic administration (extremely important for SIRS/sepsis syndrome with circulatory support)
- Alkali treatment of metabolic acidosis is important; however, there are several disadvantages with this treatment

Intravenous alkali treatment for metabolic (lactic) acidosis

Alkali	Advantages	Disadvantages
NaHCO ₃	Rapid effect, inexpensive, easy to administer	Hypertonicity, hypernatremia, \uparrow CO ₂ production, \uparrow intracellular acidosis, volume overload, no survival benefit
THAM (Tris- Hydroxymethyl Aminomethane)	No increase in CO2, penetrates cells to buffer intracellular pH, useful in the treatment of mixed metabolic and respiratory acidosis	Respiratory depression, hypoglycemia, hyperkalemia, liver necrosis in children. Avoid in renal failure
Carbicarb	A mixture of 0.33 M Na2CO3 and 0.33 M NaHCO3, less CO2 production	The same as NaHCO3, no clinical benefit and nonavailability

NaHCO3 requirements

- Solution Server [HCO₃⁻] you need to raise, i.e., ΔHCO₃⁻
- Estimate HCO₃⁻ space as 50% of body weight in metabolic acidosis*
- *Some authors calculate as 40% (note that HCO_3^- space or deficit increases with an increase in [H⁺] or a decrease in pH)
- Calculate the amount of NaHCO₃ that is needed to raise serum [HCO₃⁻] to the desired level
- Calculations should be based on an ongoing pathologic process that is causing metabolic acidosis
- Administer slowly as an isotonic solution at a rate of ~0.1 mEq/kg/min
- Consider administration of calcium gluconate separately to prevent fall in ionized Ca₂⁺ after alkali administration to improve cardiac function

Primary issue	GI pathology	Renal problem
Loss of H+		
Gain of HCO3-		

Primary issue	GI pathology	
Loss of H+	Vomitting NG sucction Congenital chloride diarhhea	H ⁺ loss
Gain of HCO3-		Secr Copic

and collecting duct dump out H+ and reabsorb HCO3-

Primary	GI
issue	pathology
Loss of H+	
Gain of	Milk-alkali syndrome
HCO3-	NaHCO3 ingestion

Primary issue	GI pathology	Renal problem
Loss of H+	Vomitting NG sucction Congenital chloride diarhhea	Mineralocorticoid excess Loop/ Thiazide diutertics Contraction alkalosis Bartter/ Gitelman syndromes
Gain of HCO3-	increased reabs	Contraction alkalosis orption of HCO ₃ ⁻ from the kidneys

The kidney's role and acid-base regulation Liver Angiotensinogen Renin AngI ACE AngII Hypothalamus ADH Vasoconstaction Aldosteron Thist and drinking Na and Water retention

Leading causes of metabolic alkalosis

Primary issue	GI pathology	Renal problem
Loss of H+	Vomitting NG sucction Congenital chloride diarhhea	Mineralocorticoid excess Loop/ Thiazide diutertics Contraction alkalosis Bartter/ Gitelman syndromes
Gain of HCO3-	Milk-alkali syndrome NaHCO3 ingestion	Contraction alkalosis

Clinical manifestations of metabolic alkalosis

Central nervous system. Reduction in blood flow, confusion, obtundation, reduced seizure threshold.

Neuromuscular. Increased excitability, tetany.

Cardiovascular. Reduced cardiac output and coronary blood flow, arteriolar vasoconstriction, increased heart rate, predisposition to refractory ventricular and supraventricular arrhythmias.

Pulmonary. Hypoventilation, hypercapnia, hypoxia.

Metabolic. Hypokalemia, decreased ionized Ca2+, hypophosphatemia, hypomagnesemia, stimulation of glycolysis and production of lactate.

Metabolic alkalosis: tratment

- 1. Address the specific cause, and correct it.
- 2. Administration of normal saline is the appropriate therapy in volume depletion patients (replaces volume and Cl⁻ loss).
- 3. Administer KCI orally or IV for severe hypokalemia.
- 4. Avoid Ringer's lactate(!), as lactate is converted into HCO_3^- and worsens alkalosis.
- 5. Intravenous HCI (0.1 or 0.2 M) indicated when NaCI and KCI are contraindicated, blood pH >7.5, or hypervolemic.
- 6. HCl should be infused via a large vein to avoid extravasation at <0.2 mEq/kg/h.
- 7. An alternative to HCl is NH_4Cl or arginine HCl.
- (!) NH₄Cl is contraindicated in hepatic and renal failure.

Metabolic alkalosis: treatment

8. Acetazolamide (250 mg BID or TID) used in patients with volume overload and normal renal function.

9. When a renal failure patient fails to respond to Clrepletion, renal replacement therapy (hemodialysis, peritoneal dialysis, or hemodiafiltration) is indicated.

10.In patients with protracted vomiting or prolonged nasogastric suction, H₂ blockers (cimetidine, ranitidine) or H/K-ATPase inhibitor (omeprazole) can blunt acid production in the stomach and reduce HCI loss.

11. Omeprazole is effective in the treatment of alkalosis in patients with gastrocystoplasty.

12. Octreotide is used to control hypergastrinemia in Zollinger–Ellison syndrome.

Respiratory vs. metabolic disorders

Respiratory disorders	Pathologic processes which disrupt acid- base balance due to their effect on the lungs (i.e. alveolar ventilation).	
	Respiratory acidosis	Respiratory alkalosis
	PaCO ₂ is too high	PaCO ₂ is too low
	(hypoventilating)	(hyperventilating)
Metabolic disorders	Pathologic processes which disrupt acid-base balance due to their effects on anything other than the lungs (i.e. kidneys. GL tract or cellular respiration)	
	Metabolic acidosis HCO $_3^-$ is too low	Metabolic alkalosis HCO $_3^-$ is too high

Respiratory acidosis (primary hypercapnia)

- PaCO₂ > 45 mmHg (hypercapnia)
- pH < 7.35 (acidosis)
- increase in serum [HCO₃⁻]

Respiratory acidosis: etiology

Respiratory acidosis the the into acute the classified into acute acidosis can be classified into and Roth acute and Thus, respiratory acidosis can be classified into acute acidosis can be classified into acute the acute and acidosis can be classified into acute acute and acidosis can be classified into acute acidosis can be classified into acute acute acute acidosis can be classified into acute (primary hypercapnia) Thus, respiratory acidosis can be classified into and acidosis can be classified into and acidosis (25 days) types. Both acute and with humavamic (25 days) types. Both acute and the type acute acute and the type acute acute and type acute ac Kan acute and mia Kan acute and mia Kan acute and min Acute and min Acute and min Acute and min Acute H⁺ is immediately min, and a steadystate condition persists

This continues for > 12 h, the kidneys generate level of HCO₃⁻ generation is completed within 3-5 days.

Respiratory acidosis

Treatment: Remove the cause. Administer an IV alkali solution. Deep breathing exercise or use of a ventilator.

RESPIRATORY ACIDOSIS

Respiratory acidosis: treatment

- Correction of the underlying cause
- Stablishing a secure patent airway
- Oxygenoterapy to improve hypoxemia (more important than lowering PaCO₂ and raising pH !)
- Assisted ventilation for severely obtunded/ comatose patients/ patients with pH < 7.10</p>
- In awake and hemodynamically stable, O₂ by nasal cannula/ by high-flow Venturi face mask (the aim: PaO₂ of 60–70 mmHg or SpO₂ > 88%)
- Mechanical ventilation in apneic/ obtunded/ hemodynamically unstable patients with pH <7.10 and PaCO₂ >80 mmHg
 Lowering PaCO₂ may be sufficient to raise pH, but NaHCO3 is needed in some patients

Respiratory alkalosis (primary hypocapnia)

- $PaCO_2 < 35mmHg (hypocapnia)$
- pH > 7.45
- decrease in serum [HCO₃⁻]

Primary hypocapnia reflects pulmonary hyperventilation. Secondary hypocapnia should be distinguished from primary hypocapnia, as the former occurs in response to metabolic acidosis.

Respiratory alkalosis (primary hypocapnia)

Corrected by nonbicarbonate buffering as well as H⁺ release from tissues;

lactate is also produced by alkalemia. This buffering from various sources persists for (several hours);

resultant acid–base disturbance is called acute respiratory alkalosis;

H⁺ secretion in both proximal tubule and cortical collecting duct is suppressed.

When alkalemia persists, renal compensation starts with a decrease in both H⁺ secretion and basolateral exit of HCO_3^- in the proximal tubule; this lowers serum [HCO₃⁻] even further, due to which the pH is maintained close to normal; the full renal compensation takes 2–3 days for completion, and a new steady state is established, which is called chronic respiratory alkalosis.

Causes of respiratory alkalosis

1. Direct stimulation of medullary respiratory center:

- Voluntary or psychogenic hyperventilation
- so CNS infection, tumor, or trauma
- Interpretation of the sensis of the sensis of the sensis of the sensitive senaitive senaitite se

- Pregnancy
- _S Pain

xanthine derivatives, catecholamines, antipsychotic drug quetiapine)

- 2. Hypoxemic stimulation of medullary respiratory center:
- Pulmonary diseases (pneumonia, asthma, pulmonary edema, pulmonary embolus, interstitial lung disease, high altitude, hypotension, severe anemia)
- 3. Mechanical ventilation:
- High minute ventilation

RESPIRATORY ALKALOSIS

Respiratory alkalosis

(Deficit of carbonic acid in the extracellular fluid due to hyperventilation) Lungs Fidney Ventilation is affected. Treatment would be recommended. Kidney Unine is alkaline. Kidneys excrete base (bicarbonate) and retain acid.

> Treatment: Remove the cause. Rebreathe expired air, e.g., CO₂, from a paper bag. Antianxiety drugs, e.g., Valium (diazepam), Ativan (lorazepam).

Respiratory alkalosis: treatment

Correction of the primary disorder of the respiratory alkalosis is extremely important:

Anxiety-hyperventilation syndromes = rebreathing into a paper or plastic bag, mild sedation and reassurance hypoxia O_2

Salicylates = urinary alkalinization, forced diuresis, dialysis Sepsis = antibiotics Hyperthyroidism = β -Blockers, antithyroid medications Asthma = bronchodilators, corticosteroids Pulmonary edema = diuretics, improvement in CHF Pulmonary embolism = O_2 , anticoagulation

Mechanical ventilation = ↓ Ventilatory rate and tidal volume, ↑ dead space, mild sedation without skeletal muscle paralysis

Acidemia vs. acidosis Alkalemia vs. alkalosis

Acidemia and alkylemia refere to a physiologic state dependent solely upon arterial pH.

Acidemia: pH < 7.35 Alkalemia: pH > 7.45 Acidemia vs. acidosis Alkalemia vs. alkalosis

Acidosis and alkalosis refer to the individual processes which tend to drive the pH towards acidemia and alkalemia, respectively.
Acidemia vs. acidosis Alkalemia vs. alkalosis

A patient can be acidemic or alkalemic, but not both.

However,

a patient can have one or more acidosis and one or more alkalosis which can directly offset one another in some cases this may even result in an overall normal pH.

Approaching an ABG

- 1. Measure electrolytes and ABG simultaneously or within few minutes apart.
- 2. Check the validity of blood pH—use Henderson equation.
- 3. Identify the primary disorder.
- 4. Calculate the AG* (correct for low albumin, if indicated).
- 5. Identify the causes of the primary disorder.
- 6. Calculate the expected compensation (also called secondary response).
- 7. Identify the mixed acid-base disorder, if any.
- 8. Use $\triangle AG / \triangle HCO_3^-$ ratio appropriately.
- 9. Determine the appropriate treatment.

"Life is a struggle, not against sin, not against the Money Power, not against malicious animal magnetism, but against hydrogen ions."

H.L. MENCKEN